Tag: information security

Scattered Spider Attacks: Tips for SaaS Security

Scattered Spider Attacks: Tips for SaaS Security

As cloud adoption soars, threat groups like LUCR-3 Scattered Spider and Oktapus are mastering new ways to exploit identity management systems(IAMs), making these attacks more frequent and harder to detect. By targeting cloud environments and leveraging human vulnerabilities, LUCR-3 compromises identity providers (IDPs) and uses sophisticated techniques to breach organizations.

Before we begin, I wanted to present a random sampling of the successful attacks carried over by the LUCR-3 aka Scattered Spider.

Company/ProductDate AttackedCompromised SystemProjected LossMitigation Time
Telecom Company (Unnamed)December 2022Mobile Carrier Network, IDP SystemsEstimated millions in damagesSeveral weeks (ongoing)​CrowdStrike
Octa (Roasted Oktapus)March 2022Identity Provider (Okta) and SaaSPotential damage to ~366 companies4-5 weeks​HeroWikipedia
British TelecommunicationsJune 2022Mobile Carrier Systems, BPO NetworksMillions in lost revenue3-4 weeks​CrowdStrikeHero
Gaming Company (Unnamed)September 2022Cloud Infrastructure (SaaS and IaaS)Losses in IP theft (unconfirmed)~2 weeks​ISPM ITDR
Cloud Hosting ProviderNovember 2022AWS, Azure Environments, IAM SystemsIP theft and reputational damage3 weeks​CrowdStrike
MGM ResortsSeptember 2023Corporate systems, Help Desk, and IDPMillions in lost revenueSystems offline for weeks​Wikipedia
Caesars EntertainmentSeptember 2023Identity Providers (IDP) and SaaS~$30 million ransom paid​ Wikipedia~1 month recovery​Cyber Defense Magazine
Charter CommunicationsApril 2024Cloud-based systems (Okta phishing)Potentially millions in damages​ ResilienceSeveral weeks
NHS Hospitals (UK)June 2024VMware ESXi servers, critical healthcare systemsDisruption of hundreds of operations​BleepingComputerOngoing​BleepingComputer
Synnovis Pathology ServicesJune 2024Ransomware on pathology services systemsEstimated millions in healthcare disruptions​BleepingComputerOngoing investigation​BleepingComputer
This table provides a detailed overview of Scattered Spider’s recent attacks across industries, demonstrating their evolving tactics and widespread impact.

This article outlines the technical steps LUCR-3 typically follows, from initial access to persistence and lateral movement within cloud environments, mostly targeting SaaS platforms.

Step 1: Initial Access Through Identity Compromise

LUCR-3 starts with a core weakness in modern security—identity management. Their main attack vectors include:

  1. SIM Swapping: LUCR-3 hijacks a user’s phone number by tricking the telecom provider into assigning the number to a new SIM card. Once they have control over the phone number, they can intercept One-Time Passwords (OTP) sent via SMS.
  2. MFA Fatigue: The attackers flood the target with repeated MFA prompts, often overwhelming them into approving a malicious login request.
  3. Phishing and Social Engineering: They set up fake login pages for SaaS applications (e.g., SharePoint or OneDrive), capturing legitimate credentials and OTP codes.

These techniques allow LUCR-3 to bypass standard Multi-Factor Authentication (MFA) protections and gain access to cloud environments​

ISPM ITDR, Hero.

Step 2: Bypassing MFA and Establishing a Foothold

Once inside, LUCR-3 focuses on maintaining access to the compromised identity. This is done by modifying the victim’s MFA settings. Their tactics include:

  • Registering New Devices: LUCR-3 will register their own devices (phones or emails) under the victim’s account, which ensures they can log in without triggering alerts. For example, they might register an iPhone if the victim previously used Android, raising minimal suspicion.
  • Adding Alternate MFA Methods: They add backup MFA methods, such as an external email address, making it even harder to lock them out if the breach is discovered​ISPM ITDR.

Step 3: Reconnaissance and Data Collection in SaaS Environments

After gaining access to cloud platforms, LUCR-3 conducts extensive reconnaissance to identify critical assets, credentials, and sensitive information. Here’s how they do it:

  1. SaaS Platforms: They use native tools within platforms like SharePoint, OneDrive, and Salesforce to search for documents containing passwords, intellectual property, or financial data. They operate like legitimate users to avoid detection.
  2. AWS Cloud: In AWS environments, LUCR-3 navigates the AWS Management Console, targeting services like EC2 (Elastic Compute Cloud) and S3 (Simple Storage Service). They leverage the AWS-GatherSoftwareInventory job through Systems Manager (SSM) to list running software across EC2 instances​ ISPM ITDR.
  3. Privilege Escalation: LUCR-3 may modify IAM roles or escalate privileges by updating LoginProfiles or creating new access keys, ensuring they have continued administrative access​Hero.

Step 4: Lateral Movement and Persistence

LUCR-3 ensures they have multiple ways to re-enter a compromised environment, even if one of their entry points is discovered. Here’s how they achieve persistence:

  1. Create New IAM Users: LUCR-3 creates new user accounts that align with the naming conventions of the compromised environment to avoid suspicion. These accounts often have high-level access, allowing them to continue accessing the environment even after the initial breach is patched.
  2. Secrets Harvesting: Using tools like S3 Browser, LUCR-3 harvests credentials stored in AWS Secrets Manager and similar services, allowing them to steal sensitive data and further penetrate systems​ Hero.
  3. MFA Manipulation: They alter MFA settings to ensure continued access, often registering additional email addresses or devices that align with the compromised identity.

Step 5: Data Exfiltration and Extortion

Once LUCR-3 has gained the necessary access and gathered sensitive data, they execute their final stage of the attack, which often involves extortion. The data collected during their reconnaissance, such as customer information or proprietary code, is used as leverage to demand payment from the compromised organization​ The Hacker NewsISPM ITDR.

How to Detect and Prevent LUCR-3 Attacks

Given LUCR-3’s sophisticated techniques, organizations must adopt advanced security measures to detect and mitigate such attacks:

  • Monitor MFA Changes: Keep a close watch for unusual changes in MFA settings, such as new device registrations or changes from app-based authentication to SMS-based methods.
  • Audit Cloud Logs: Regularly audit cloud environments, especially IAM policy changes, new access key creation, and suspicious activity in management consoles.
  • Behavioral Anomaly Detection: Implement advanced behavioral monitoring to detect when legitimate accounts are being used in unusual ways, such as accessing unfamiliar services or using unfamiliar devices.

Conclusion

LUCR-3 (Scattered Spider) represents a new breed of cyber threat actors that rely on identity compromise rather than malware or brute force. By targeting the very foundation of security—identity—they can infiltrate cloud environments, move laterally, and exfiltrate data with relative ease. As organizations increasingly rely on cloud services, strengthening identity management, closely monitoring for anomalies, and responding quickly to suspicious behavior are critical defenses against such attacks.

References and Further Reading

  1. The Hacker News: Provides a detailed breakdown of LUCR-3’s identity-based attacks across cloud environments, lateral movement techniques, and persistence strategies.
  2. Permiso.io: Discusses how LUCR-3 targets identity infrastructure, modifies MFA settings, and maintains persistence in cloud environments like AWS and Azure.
  3. CrowdStrike: Offers insights into Scattered Spider’s use of the Bring-Your-Own-Vulnerable-Driver (BYOVD) technique and their focus on telecom and BPO sectors.
  4. Resilience Cyber Research: Highlights recent phishing campaigns by LUCR-3 in 2024, targeting industries such as telecom, food services, and tech, using Okta-based phishing tactics.
  5. EclecticIQ: Discusses LUCR-3’s involvement in ransomware attacks targeting cloud infrastructures within the insurance and financial sectors, leveraging smishing and phishing techniques.
  6. Wikipedia (Scattered Spider): Overview of the MGM Resorts hack in 2023, detailing how Scattered Spider gained access to internal systems through social engineering and caused significant disruptions.
  7. Cyber Defense Magazine: Discusses how LUCR-3 has highlighted vulnerabilities in MFA and cloud security, predicting more targeted attacks on SaaS and cloud service providers.
  8. BleepingComputer: Provides an overview of LUCR-3’s collaboration with ransomware groups like Qilin, targeting high-profile companies such as MGM Resorts and healthcare services.
  9. Caesars and MGM Hacking Incident: Outlines how Caesars Entertainment suffered a breach in September 2023, paying a ~$30 million ransom, while MGM Resorts experienced extensive downtime following a similar attack.
  10. Microsoft and Qilin Ransomware: Microsoft linked Scattered Spider to ransomware attacks using the Qilin variant, affecting companies like Synnovis Pathology and NHS hospitals in 2024. Read moreBleepingComputerWikipedia

These resources offer in-depth insights into the attack strategies and defence mechanisms relevant to LUCR-3 (Scattered Spider), perfect for anyone looking to deepen their understanding of identity-based attacks and cloud security.

A Step-by-Step Guide to Implementing AttackGen for Improved Incident Response

A Step-by-Step Guide to Implementing AttackGen for Improved Incident Response

In the ever-evolving landscape of cybersecurity, preparing for potential incidents is crucial. One innovative tool making waves in this domain is AttackGen. Developed by Matthew Adams, who heads the Security for GenerativeAI at Citi, AttackGen is designed to generate tailored incident response scenarios. This cutting-edge tool leverages the power of large language models (LLMs) to generate customized incident response scenarios tailored to specific industries and company sizes. Whether you’re in Aerospace & Defense or FinTech or Healthcare, AttackGen offers invaluable training scenarios to enhance your cybersecurity incident response capabilities.

What is AttackGen?

AttackGen is a cybersecurity incident response testing tool designed to help organizations prepare for potential threats. By using LLMs, it creates realistic incident response scenarios based on the chosen industry and company size. For instance, it can generate scenarios for a “Large” company with 201-1,000 employees in the Aerospace & Defense sector. These tailored scenarios are essential for training cybersecurity incident responders, providing them with practical, industry-specific exercises.

How to Get Started with AttackGen

To start using AttackGen, follow these steps:

  1. Clone the Repository
    First, you’ll need to clone the AttackGen repository from GitHub. You can find it by searching for “AttackGen” or the profile of its creator, Matt Adams.
   git clone https://github.com/mrwadams/attackgen.git
  1. Navigate to the Directory
    Change into the newly created ‘attackgen’ directory.
    cd attackgen
  1. Install Requirements
    Install the necessary Python packages to run the tool.
   pip install -r requirements.txt
  1. Download MITRE ATT&CK Framework
    Download the latest version of the MITRE ATT&CK framework and place it in the “data” directory within the attackgen folder.
    Download MITRE ATT&CK Framework

5. Run the Application
Start the application using Streamlit.

   streamlit run 👋_Welcome.py

Using AttackGen

Once the application is up and running, open it in your preferred web browser. You’ll be greeted with the main page where you’ll need to enter your OpenAI API key. Also, for the record, AttackGen supports multiple LLMs, including the vaunted Mistral, Google AI, ollama and Azure OpenAI. After selecting your preferred models and entering your API key, follow these steps:

  1. Select Industry and Company Size
    Choose your company’s industry and size to tailor the incident response scenarios.
  2. Generate Scenario
    Click on “✨ Generate Scenario” to proceed.
  3. Choose Threat Actor Group
    On the next page, select a threat actor group and associated ATT&CK techniques.
  4. Download Scenario
    After generating the scenario, you can download it in Markdown format for use in your incident response training. It’s advisable to upload this scenario to your version control system promptly.

Visualizing Your Scenarios

For those interested in visualizing the Tactics, Techniques, and Procedures (TTPs) included in your scenarios, consider using the ATT&CK Navigator. This tool helps identify, highlight, and prioritize TTPs effectively. You can learn more about this in one of my previous posts on Analyzing and Visualizing Cyberattacks using Attack Flow.

Conclusion

AttackGen is a powerful tool for enhancing your incident response training by providing realistic, industry-specific scenarios. Kudos to Matt Adams for developing this innovative tool. For more insights and guides on cybersecurity, follow me as I continue to explore and share new tools and techniques every week. Your feedback is always welcome!


References and Further Reading:

Feel free to reach out with any questions or suggestions. Happy hunting! 🚀

Bitnami