Month: December 2024

The Trade-offs of Open Source Going Private

The Trade-offs of Open Source Going Private

The open-source software (OSS) movement has long been hailed as the engine of technological innovation and collaboration. Its ethos of transparency, accessibility, and community-driven development has empowered startups and global enterprises alike. Yet, recent years have seen a growing trend: prominent open-source companies transitioning to proprietary or hybrid licensing models. This shift raises important questions about the future of open-source and its implications for the broader startup ecosystem.

This article is inspired by TechCrunch’s insightful timeline, “Open-Source Companies That Go Proprietary: A Timeline,” which highlights the evolving dynamics of open-source companies navigating sustainability and profitability challenges. The examples provided there form the foundation for exploring this complex and contentious issue.

A Brief History of Open Source

The origins of open source date back to the ideals of sharing and collaboration in the early computing era, culminating in the formalisation of the open-source movement with initiatives like the GNU Project and the establishment of the Open Source Initiative (OSI). Over decades, OSS became the backbone of modern technology, with projects such as Linux, Apache, and Kubernetes driving exponential innovation.

Startups have especially benefited from OSS. The ability to leverage powerful, free tools has enabled rapid prototyping and product development. For instance, frameworks like Django, Node.js, and React.js have drastically reduced development time and costs for young companies.

The Shift to Proprietary Models

However, several prominent OSS companies have transitioned to proprietary or dual licensing models. Redis Labs, MongoDB, Cassandra, and Elastic are notable examples. This shift often stems from a desire to combat exploitation by cloud providers like AWS, Google Cloud, and Microsoft Azure. These giants offer managed services based on OSS, often reaping significant profits without contributing meaningfully to the original projects.

Timeline of Transitions

Here are key examples of products and companies that have navigated this challenging transition, as highlighted in TechCrunch’s timeline:

  • 2012: MySQL’s acquisition by Oracle raised concerns about its licensing and development practices, setting an early precedent for shifts in open-source licensing.
  • 2014: Docker introduced a new model combining open-source and proprietary features, laying the groundwork for hybrid licensing approaches.
  • 2016: Apache Cassandra saw increased commercialisation efforts, focusing on enterprise-grade features to sustain the ecosystem.
  • 2018: MongoDB adopted the Server Side Public License (SSPL), aiming to prevent unlicensed use by cloud providers.
  • 2019: Redis Labs altered its licensing to introduce modules under a Commons Clause, restricting commercial usage. This move sparked significant backlash, leading to forks such as ValkeyDB, where developers sought to preserve Redis’s original open ethos.
  • 2021: Elastic transitioned from an Apache 2.0 licence to SSPL, citing similar concerns.

These changes reflect a growing realisation: while OSS enables widespread adoption, it also leaves developers and smaller companies vulnerable to value extraction by larger corporations.

Redis: A Case Study in Controversy

Redis Labs exemplifies the complexities and challenges faced by open-source companies navigating proprietary transitions. Its decision to relicense modules under the Commons Clause aimed to curtail exploitation by cloud providers, but it sparked intense community backlash.

Community Reaction

Many in the open-source community viewed this shift as a betrayal of the principles that had propelled Redis’s success. Developers launched forks like ValkeyDB to maintain an open and unrestricted version of Redis. These forks, while preserving accessibility, also introduced fragmentation into the Redis ecosystem, complicating adoption and support.

Impact on the Ecosystem

The controversy surrounding Redis highlights the delicate balance between sustainability and community trust. While the new licensing model allowed Redis Labs to monetise its innovations, it also risked alienating contributors and users. The long-term effects include a splintered ecosystem and challenges in maintaining a unified developer base.

Security by Obscurity Doesn’t Work

Critics often cite security as a reason to move away from open-source. Yet, history demonstrates the fallacy of “security by obscurity.” High-profile breaches, such as the SolarWinds compromise and MOVEit exploit, highlight the vulnerabilities of proprietary systems. In contrast, open-source projects like OpenSSL and Kubernetes have maintained long periods of incident-free operation, thanks to their transparent development models and extensive peer reviews.


Implications for the Startup Ecosystem

For Startups

The shift towards proprietary models introduces barriers for startups that have traditionally relied on open-source tools. Licensing costs and restrictions could increase operational expenses and hinder innovation. Imagine the inefficiency of building an ORM or cryptographic library from scratch if these tools were not freely available.

For Developers

Developers may feel alienated as companies pivot away from the inclusive values of OSS. Forks and community fragmentation—as seen with Redis’ Valkey project—are common consequences. This creates confusion and inefficiencies within the ecosystem.

For the Ecosystem

The trend also threatens the collaborative spirit of open-source, potentially stifling innovation. However, it opens opportunities for hybrid models, such as open core or dual licensing, that attempt to balance openness with profitability.

The Debate: For and Against

Supporters’ Perspective

Proponents argue that transitioning to proprietary models is a pragmatic move. Companies must protect their intellectual property and ensure financial sustainability to continue innovating. Dual licensing and managed services enable companies to monetise while still offering OSS elements.

Critics’ Perspective

Opponents view this as a betrayal of open-source principles. Amy Hupe’s critique of OSS’ inclusivity points to deeper systemic issues that proprietary transitions exacerbate. Privatization risks alienating diverse contributors by creating financial and operational barriers to entry. For underrepresented groups, these shifts may exacerbate inequities, further limiting their participation and representation in the open-source space.

Lessons from the Transition

Several companies offer valuable insights into navigating these shifts:

  1. MongoDB: Leveraged the SSPL licence to maintain control while ensuring cloud providers paid their share.
  2. Elastic: Transitioned with transparency, minimising backlash by communicating its rationale clearly.
  3. Red Hat: Successfully pioneered a hybrid model, blending open-source development with enterprise-grade support and services.

Governance and transparency play crucial roles in maintaining community trust during these transitions.

The Future of Open Source

Potential Models for Sustainability

Innovative models such as open core (where core functionalities remain free while advanced features are paid) or dual licensing could balance openness with financial viability. Collaboration with cloud providers and clear governance structures can also mitigate exploitation concerns.

Imagining a Closed-Source World

If the trend continues unchecked, we risk entering a world where essential frameworks and libraries are inaccessible. This would stifle innovation, increase costs, and erode the collaborative ethos of the tech ecosystem.

Conclusion: Striking the Balance

The evolution of open-source to proprietary models reflects the tension between ideals and pragmatism. This shift challenges the foundational values of OSS but also underscores the need for sustainability in a rapidly changing landscape. To secure the future of open-source, stakeholders—from developers to corporations—must prioritise inclusive practices, innovative licensing models, and transparent governance. The future of technology hinges on our ability to preserve the collaborative spirit of open-source while adapting to its modern challenges. Let’s build a sustainable open-source ecosystem that remains a beacon of innovation and inclusivity in the years to come.


References and Further Reading

  1. “Open-Source Companies That Go Proprietary: A Timeline,” TechCrunch, December 2024.
  2. “Open Source vs Open Governance: The State and Future of the Movement,” LinkedIn, Ramkumar Sundarakalatharan.
  3. “Privatised Open Source Software,” California Management Review, 2020.
  4. “Why Open Source Matters,” nScale Blog.
  5. “Open Source Software: Why It Matters and How to Get Involved,” The Alan Turing Institute Blog.
  6. “Open Source Does Not Mean Inclusive,” AmyHupe.co.uk.
  7. Redis Labs Licensing Updates, Company Blog.
  8. Apache Cassandra Licensing Updates, DataStax Blog.
How To Measure Real Success In Software Engineering

How To Measure Real Success In Software Engineering

Recently, while attending The Business Show in London, I engaged in a conversation with a CXO of an upcoming Fintech company. The discussion began with cybersecurity implementation—a topic close to my heart—but quickly veered into the realm of engineering throughput. What followed was an incoherent rant by the CXO, a frustrating narrative about firing their Delivery Director for refusing to scale the engineering team to meet deadlines for the company’s next shiny event. Despite my best efforts to pull this gentleman out of his rabbit hole, my time and reasoning seemed to fall on deaf ears.

Reflecting on this interaction over the past month, I’ve realized this episode was emblematic of a larger issue: the prevalent fallacy among CXOs that more engineers equals faster and better output. Surprisingly, this misconception thrives in part because of the silence of engineering leaders—CTOs, VPs, and Directors of Engineering—who often fail to push back against flawed assumptions at the executive level.

Inspired by my recent association with the Information Security Group (ISG) at the Royal Holloway University of London, I decided to don my “academic specs” and examine this fallacy more critically. The result is a deeper dive into the myths of scaling engineering teams, the science behind team efficiency, and a call for a cultural shift in how organizations measure productivity.

The Scaling Myth: Why More Isn’t Always Better

At the heart of this fallacy is a simplistic assumption: more engineers means more features, delivered faster. While this notion seems logical, it is disproven by Price’s Law, a principle that exposes the diminishing returns of team scaling.

Rediscovering Derek J. de Solla Price: From Antikythera to Engineering Efficiency

My journey to understanding Price’s Law began with a fascination for the Antikythera Mechanism —an ancient Greek marvel of engineering and astronomy. It was through this mechanism that I first encountered the work of Prof. Derek J. de Solla Price, a British physicist and historian whose curiosity and intellect extended far beyond antiquities. Inspired by the ingenuity of the Antikythera Mechanism, I was drawn to explore the origins of Damascus and Wootz steel, and its roots in the south-western peninsula of India (as detailed in Aayutha Desam by R. Mannar Mannan). (More about that in another post!)

But it was Price’s insight into the uneven distribution of productivity in groups that struck a chord with my work in software engineering. His principle, now widely known as Price’s Law, asserts that in any team, 50% of the work is accomplished by the square root of the total number of participants.

  • In a team of 10 engineers, approximately 3 contributors (√10) are responsible for half the output.
  • In a team of 100 engineers, only 10 individuals (√100) produce as much as the remaining 90 combined.

This principle highlights a counterintuitive but vital truth: as team size grows, the proportion of high contributors decreases, leading to inefficiencies that compound over time. This isn’t just an academic curiosity—it’s a critical insight for engineering leaders tasked with scaling teams and delivering results.

Price’s Law challenges a long-standing assumption in engineering leadership: that scaling teams proportionally scales productivity. By understanding this principle, CTOs, VPs, and engineering managers can rethink strategies for achieving efficiency and delivering value, even with constrained resources.

The Myth of Highly Motivated Teams

Some self-proclaimed visionary leaders advocate for hiring only highly motivated individuals, often overlooking how teams function in practice. In any organized group, work typically falls into three categories:

  1. Drudgery Work (Low Impact, High Intensity): Routine tasks like debugging or documentation, essential but unappealing.
  2. Intermediate Work (Medium Impact, Medium Intensity): Feature upgrades or system integrations, vital for sustaining operations.
  3. Challenging Work (High Impact, High Intensity): Complex, high-stakes initiatives that highly motivated individuals prefer.

The Problem

Highly motivated individuals often prioritize high-impact projects, leaving routine and intermediate work neglected. This creates:

  • Operational Bottlenecks: Accumulating technical debt and system fragility.
  • Imbalanced Workloads: Overburdened team members handling routine tasks.
  • Team Friction: Reduced cohesion and potential burnout.

The Solution: Balance Over Ambition

Effective teams thrive on diversity in skill sets and balanced task allocation. Leaders must:

  • Distribute Work Strategically: Ensure all types of work are addressed.
  • Value Contributions Equally: Recognize the importance of routine and intermediate tasks.
  • Foster Team Cohesion: Avoid over-prioritizing high-stakes projects at the expense of operational stability.

Conclusion: A truly visionary leader grounds ambition in pragmatism, creating teams that excel not just in high-impact projects but also in sustaining the essentials of day-to-day operations.

Implications for Team Expansion

For CTOs, VPs, and engineering managers, this dynamic presents a counterintuitive challenge: merely expanding the team does not guarantee proportional gains in productivity. Doubling headcount often introduces:

  1. Communication Overhead: Larger teams require more coordination, which consumes valuable time and resources.
  2. Dilution of Accountability: As teams grow, individual contributions become harder to track, potentially reducing ownership and engagement.
  3. Coordination Complexities: Increased interdependencies among team members can slow down decision-making and implementation.

To achieve a twofold increase in productivity, Price’s Law suggests that you may need to quadruple the team size, a move that is often impractical and financially untenable. Instead, engineering leaders must rethink productivity beyond the simplistic metric of team size.

Shifting Focus: Outcomes Over Outputs

Traditional productivity metrics, such as the number of features released or lines of code written, focus on outputs—tangible deliverables produced by the team. However, outputs do not inherently translate into value. Consider the distinction:

  • Outputs: Metrics like features delivered or tickets closed.
  • Outcomes: Measurable changes in user behaviour that drive business results, such as increased user retention or reduced churn.

Relying solely on outputs creates a misleading picture of productivity. A feature-rich application that fails to address user needs or business goals is ultimately unproductive. Instead, outcomes—which capture the real-world effectiveness of engineering efforts—offer a better lens to measure success.

Outcome vs. Impact

While outcomes focus on immediate effects (e.g., increased sign-ups from a new feature), impact delves deeper into long-term consequences. For example:

  • An outcome may be an increase in user sign-ups after a feature launch.
  • The impact would be sustained revenue growth and user satisfaction resulting from the feature’s value over time.

Engineering teams must aim for outcomes that align with strategic goals while keeping an eye on their long-term impacts.

Counterproductive Paradigm: The Threat Surface of Excessive Outputs

Emphasizing outputs over outcomes can be counterproductive, leading to what can be described as an expanding threat surface:

  1. Defects and Bugs: Adding more features often introduce unintended issues that require additional resources to resolve.
  2. Maintenance Burden: More code increases the risk of technical debt, making future development slower and more complex.
  3. Conflict Resolution: Larger teams fixing bugs or implementing features in parallel can inadvertently cause regressions, especially when the main sprint continues uninterrupted.

This vicious cycle diverts focus from strategic initiatives, tying up engineers in a continuous loop of fixes. Instead of scaling output indiscriminately, teams should focus on ensuring that every deliverable contributes to meaningful outcomes.

Focusing on Impacts and Outcomes: A Leadership Imperative

For engineering leaders, the shift from outputs to impacts and outcomes is transformative. This approach emphasizes:

  1. Defining Clear Objectives: Establish measurable outcomes (e.g., reducing churn by 10%) that align with business goals.
  2. Prioritizing High-Impact Work: Evaluate tasks based on their potential to deliver meaningful results.
  3. Empowering Teams: Foster a culture where engineers understand and contribute to broader business objectives rather than just completing tickets.
  4. Continuous Feedback Loops: Regularly assess whether engineering efforts are driving intended outcomes.

This shift not only enhances productivity but also aligns engineering work with the organization’s mission, fostering a sense of purpose within teams.

Conclusion: Redefining Productivity in Software Engineering

Price’s Law reminds us that productivity does not scale linearly with team size. Engineering leaders must navigate this reality by focusing on outcomes and impacts rather than outputs. This paradigm shift requires a cultural and strategic overhaul, but the rewards—greater efficiency, alignment, and value delivery—are well worth the effort.

By embracing this approach, organizations can ensure that their engineering efforts contribute directly to their strategic goals, transforming software development into a driver of sustainable business success.

References

  1. Sundarakalatharan, R. (2022). How to measure Engineering Productivity?. Retrieved from https://nocturnalknight.co/how-to-measure-engineering-productivity/
  2. Bohrmann, N. (2022). How Price’s Law Applies to Everything. Retrieved from https://nielsbohrmann.com/prices-law/
  3. LeadDev. (2022). Focus on outcomes over outputs. Retrieved from https://leaddev.com/velocity/focus-outcomes-over-outputs
  4. Monday Mornings. (2023). Productivity and Price’s Law. Retrieved from https://mondaymornings.madisoncres.com/productivity-and-prices-law-1
  5. TechRadar. (2023). Outcomes versus outputs: the real measure of developer productivity. Retrieved from https://www.techradar.com/pro/outcomes-versus-outputs-the-real-measure-of-developer-productivity
  6. Royal Holloway Information Security Group. (2024). https://pure.royalholloway.ac.uk/
  7. Wikipedia. (2024). Antikythera Mechanism. Retrieved from https://en.wikipedia.org/wiki/Antikythera_mechanism
  8. Wikipedia. (2024). Derek J. de Solla Price. Retrieved from https://en.wikipedia.org/wiki/Derek_J._de_Solla_Price
  9. Wikipedia. (2024). Wootz Steel. Retrieved from https://en.wikipedia.org/wiki/Wootz_steel
  10. Purple Book House. (2024). Aayutha Desam by R. Mannar Mannan. Retrieved from https://www.purplebookhouse.co.uk/product-page/aayutha-desam-book-type-katturaigal-history-by-r-mannar-mannan
The Truth About “Ghost Engineers”: A Critical Analysis

The Truth About “Ghost Engineers”: A Critical Analysis

Disclaimer:
This article is not intended to discredit Boris Denisov, Stanford University, McKinsey, or any other entities referenced herein. I hold immense respect for their contributions to research and industry discourse. While findings like these may resonate with practices in FAANG companies, large organizations, and mature startups, this critique seeks to explore the broader implications of relying on narrow metrics to evaluate productivity in software engineering.

The “Ghost Engineer” Narrative

The term “ghost engineers,” popularized by a recent Stanford study, describes software engineers who allegedly contribute minimally to codebases. Analyzing data from over 50,000 engineers, the study concludes that 9.5% of engineers fall into this category, with the prevalence rising to 14% among remote workers​.

While the findings spark interesting discussions, they rely heavily on the flawed assumption that code commit frequency equates to productivity. As I argued in No, McKinsey, You Got It All Wrong About Developer Productivity, this narrow perspective risks undervaluing critical aspects of software engineering that don’t leave a visible footprint in version control systems​​.

Unintended Amplification: The Snowball Effect

One of the most significant risks of such conclusions—especially before peer review—is their unintended amplification. Articles on Yahoo, TechCrunch, and Newsday have already simplified these findings, creating narratives that could ripple through the industry:

  1. Unnecessary Layoffs: Misinterpreting data might lead organizations to hastily classify engineers as unproductive, ignoring less visible but valuable contributions.
  2. Remote Work Stigma: By associating remote work with reduced productivity, these claims risk undermining one of the most effective workforce models when well-managed.
  3. Toxic Metrics Culture: Over-reliance on activity metrics like commit counts can encourage engineers to game the system by prioritizing volume over meaningful work, as discussed in Business Value Delivery by Engineering Teams in Startups (Part 2)​.

History offers cautionary examples, such as McKinsey’s controversial reliance on lines of code as a productivity measure—a practice criticized in my earlier article for ignoring the multifaceted nature of modern software engineering​​.

Engineering Productivity: Beyond Output Metrics

As outlined in Is the Myth of a 10x Developer Real?, productivity in software engineering extends far beyond raw output. Effective engineers don’t just code—they align stakeholders, resolve ambiguity, and reduce future risks. These invisible contributions often lead to:

  • Improved Collaboration: Engineers who mentor, review code, or resolve cross-team dependencies amplify the impact of their teams.
  • Strategic Outcomes: Refactoring technical debt or implementing security frameworks might reduce visible code output while significantly improving system health​​.

Commit Frequency Misses Critical Context

  • Quality Over Quantity: A single commit that eliminates 1,000 lines of redundant code can be more impactful than 10 minor feature updates.
  • Diverse Roles: Roles like DevOps, QA, and security often contribute indirectly to engineering success but rarely generate frequent commits.

By focusing solely on visible metrics, we risk reinforcing flawed incentives, a point I emphasized in Business Value Delivery by Engineering Teams in Startups (Part 1)​​.

Analyzing the Stanford Study’s Claims

Claim 1: Engineers with Low Commit Activity Are Unproductive

Rebuttal: This assumption ignores the cognitive and collaborative aspects of engineering. As noted in No, McKinsey, You Got It All Wrong About Developer Productivity, activities like design discussions, documentation, and mentoring are essential but invisible in commit logs​.

Claim 2: Remote Engineers Are More Likely to Be “Ghost Engineers”

Rebuttal: Remote work relies on asynchronous collaboration, where documentation and long-term planning take precedence over immediate outputs. Simplistic comparisons risk stigmatizing effective remote models​​.

Claim 3: Low Commit Activity Correlates with Poor Team Performance

Rebuttal: High-performing teams often include specialists whose contributions are less visible but critical. For example, a security engineer resolving vulnerabilities or a DevOps engineer optimizing CI/CD pipelines may not show up in commit logs​.

Claim 4: Organizations Could Save Billions by Addressing the “Ghost Engineer” Problem

Rebuttal: Cost-cutting measures based on flawed metrics often lead to higher technical debt, increased turnover, and diminished morale. As argued in Business Value Delivery by Engineering Teams in Startups (Part 2), true cost efficiency lies in maximizing impact, not minimizing headcount​.

Impact vs Code-Commits: Understanding the Misalignment

A recurring issue with productivity metrics like code-commit frequency is their inability to reflect the true impact of an engineer’s work. The volume of code changes often says little about the value delivered, as demonstrated by the following examples:

Example 1: A Cosmetic UI Change vs. A Critical API Update

Imagine a product manager requests a seemingly simple change: update a button’s color from purple to orange. While this may sound trivial, it could involve:

  • Updating CSS libraries: A cascade of dependencies might require 1,000+ lines of revisions.
  • Testing for accessibility: Ensuring compliance with color-contrast guidelines adds complexity.
  • Regression testing: Updating snapshot tests or fixing broken visual diffs.

This cosmetic change could result in dozens of commits, each addressing a specific dependency or edge case.

Contrast this with a backend engineer’s work on the API gateway to improve application concurrency. This might involve:

  • Identifying bottlenecks: Profiling existing workloads and implementing a solution to reduce latency.
  • Optimizing database connections: Reducing round trips or improving query performance.
  • Deploying with minimal disruption: A single, concise commit could encapsulate weeks of planning and testing.

Here, the backend change’s impact far outweighs the UI update, even though it appears smaller in terms of commit frequency.

Example 2: Bulk Refactoring vs. Precise Bug Fixing

A mid-level engineer is tasked with refactoring a legacy module, updating deprecated methods, and restructuring a monolithic codebase for better readability. This effort generates hundreds of commits and thousands of lines of changes, none of which immediately improve the product’s features.

On the other hand, a senior engineer identifies and fixes a critical bug that intermittently crashes the application. The solution, a one-line code change after hours of debugging, resolves a high-severity issue affecting thousands of users.

From a commit-count perspective, the refactoring task appears more productive. However, the senior engineer’s single-line fix has a far greater immediate impact.

Example 3: Feature Addition vs. Security Enhancement

A frontend developer introduces a new feature, such as a user profile editor. This entails:

  • New UI components: HTML and CSS for the form.
  • Frontend validations: JavaScript-based constraints for data inputs.
  • Integration tests: Mock API responses for various test cases.

The addition spans 2,000 lines of code across 20 commits.

Meanwhile, a DevSecOps engineer works on a critical security vulnerability. The task involves:

  • Rotating access tokens: Updating key secrets stored in the CI/CD pipeline.
  • Implementing security headers: Adding CSPs to prevent XSS attacks.
  • Hardening configurations: Minor changes in deployment scripts to reduce attack surfaces.

Although the security enhancement generates fewer than 10 commits, its value in preventing potential breaches and compliance penalties is enormous.

Key Takeaways

  • Context Matters: Evaluating productivity requires understanding the context and complexity of the task, not just the output volume.
  • Quality Over Quantity: High-impact changes often involve fewer commits, while low-value tasks may inflate commit counts.
  • Recognizing Diverse Contributions: Engineers working on performance, security, or architecture frequently produce less visible yet highly impactful work.

This misalignment underscores the need for organizations to adopt holistic evaluation metrics that consider both quantitative output and qualitative impact. By focusing on the latter, teams can better recognize and reward meaningful contributions.

The Danger of Flawed Productivity Metrics

Simplistic metrics can have cascading negative effects:

  1. Burnout: Engineers may feel pressured to prioritize activity over quality.
  2. Stifled Innovation: Overemphasis on visible output discourages experimentation and risk-taking.
  3. Loss of Talent: Talented engineers in specialized roles may leave if their contributions are undervalued.

As emphasized in Is the Myth of a 10x Developer Real?, effective engineering is about multiplying impact, not maximizing visible output​​.

A Holistic Approach to Productivity

To address these issues, organizations must adopt nuanced evaluation frameworks:

  1. Impact-Driven Metrics: Evaluate contributions based on outcomes, such as improved system reliability or customer satisfaction.
  2. Recognize Invisible Work: Acknowledge tasks like mentorship, technical debt reduction, and long-term strategic planning.
  3. Foster a Culture of Trust: Empower teams to experiment and innovate without fear of being misjudged by flawed metrics.

Conclusion

The “ghost engineer” narrative oversimplifies the multifaceted nature of software engineering. By relying on metrics like commit counts, it risks undervaluing critical contributions and fostering unhealthy workplace dynamics. As I’ve argued across multiple articles, effective engineering teams succeed by delivering value, not just output. The industry must move beyond flawed productivity metrics and adopt more comprehensive frameworks to recognize the true contributions of every engineer.


References and Further Reading

  1. Denisov-Blanch, Y. (2024). Twitter Thread on Ghost Engineers. Retrieved from link.
  2. Denisov-Blanch, Y. (2024). Stanford Research on Software Engineering Productivity. Stanford University. Retrieved from link.
  3. Polyakov, A. (2024). Ghost Engineers—Utter Non-Sense! Medium. Retrieved from link.
  4. No, McKinsey, You Got It All Wrong About Developer Productivity. Nocturnalknight.co. Retrieved from link.
  5. Is the Myth of a 10x Developer Real? Nocturnalknight.co. Retrieved from link.
  6. Bridgwater, A. (2024). Code Busters: Are Ghost Engineers Haunting DevOps Productivity? DevOps.com. Retrieved from link.
  7. Business Value Delivery by Engineering Teams in Startups (Part 1). Nocturnalknight.co. Retrieved from link.
  8. Business Value Delivery by Engineering Teams in Startups (Part 2). Nocturnalknight.co. Retrieved from link.
  9. Long, K. (2024). Are Ghost Engineers Undermining Tech Productivity? Business Insider. Retrieved from link.
  10. Passionate Geekz. (2024). Can a Company Increase Its Market Value by Laying Off Employees? Retrieved from link.
Do You Know What’s in Your Supply Chain? The Case for Better Security

Do You Know What’s in Your Supply Chain? The Case for Better Security

I recently read an interesting report by CyCognito on the top 3 vulnerabilities on third-party products and it sparked my interest to reexamine the supply chain risks in software engineering. This article is an attempt at that.

The Vulnerability Trifecta in Third-Party Products

The CyCognito report identifies three critical areas where third-party products introduce significant vulnerabilities:

  1. Web Servers
    These foundational systems host countless applications but are frequently exploited due to misconfigurations or outdated software. According to the report, 34% of severe security issues are tied to web server environments like Apache, NGINX, and Microsoft IIS. Vulnerabilities like directory traversal or improper access control can serve as gateways for attackers.
  2. Cryptographic Protocols
    Secure communication relies on cryptographic protocols like TLS and HTTPS. Yet, 15% of severe vulnerabilities target these mechanisms. For instance, misconfigurations, weak ciphers, or reliance on deprecated standards expose sensitive data, with inadequate encryption ranking second on OWASP’s Top 10 security threats.
  3. Web Interfaces Handling PII
    Applications that process PII—such as invoices or financial statements—are among the most sensitive assets. Alarmingly, only half of such interfaces are protected by Web Application Firewalls (WAFs), leaving them vulnerable to injection attacks, session hijacking, or data leakage.

Beyond Web Servers: The Hidden Dependency Risks

You control your software stack, but do you actually know what runs beneath those flashy Web/Application servers?

Drawing parallels from my previous article on PyPI and NPM vulnerabilities, it’s clear that open-source dependencies amplify these threats. Attackers exploit the very trust inherent in supply chains, introducing malicious packages or exploiting insecure libraries.

For example:

  • Attackers have embedded malware into popular NPM and PyPI packages, which are then unknowingly incorporated into enterprise-grade software.
  • Dependency confusion attacks exploit naming conventions to inject malicious packages into CI/CD pipelines.

These risks share a core vulnerability with traditional third-party systems: an opaque supply chain with minimal oversight. This is compounded by the ever-decreasing cycle-times for each software releases, giving little to no time for even great Software Engineering teams to doa decent audit and look into the dependency graph of the packages they are building their new, shiny/pointy things that is to transform the world.


Why Software Supply Chain Attacks Persist

As highlighted by Scientific Computing World, software supply chain attacks persist for several reasons:

  • Aggressive GTM Timelines: Most organisations now run quarterly or even monthly product roadmaps, so it is possible to launch a new SaaS product in a matter of days to weeks by leveraging other IaaS, PaaS or SaaS systems – in addition to any Libraries, frameworks and other constructs.
  • Exponential Complexity: With organisations relying on layers of third-party and fourth-party services, the attack surface expands exponentially.
  • Insufficient Oversight: Organisations often focus on securing their environments while neglecting the vendors and libraries they depend on.
  • Lagging Standards: The industry’s inability to enforce stringent security protocols across the supply chain leaves critical gaps.
  • Sophistication of Attacks: From SolarWinds to MOVEit, attackers continually evolve, targeting blind spots in detection and remediation frameworks.

Recommended Steps to Mitigate Supply Chain Threats

To address these vulnerabilities and build resilience, organizations can take the following actionable steps:

1. Map and Assess Dependencies

  • Use tools like Dependency-Track or Sonatype Nexus to map and analyze all third-party and open-source dependencies.
  • Regularly perform software composition analysis (SCA) to detect outdated or vulnerable components.

2. Implement Zero-Trust Architecture

  • Leverage Zero-Trust frameworks like NIST 800-207 to ensure strict authentication and access controls across all systems.
  • Minimize the privileges of third-party integrations and isolate sensitive data wherever possible.

3. Strengthen Vendor Management

  • Evaluate vendor security practices using frameworks like the NCSC’s Supply Chain Security Principles or the Open Trusted Technology Provider Standard (OTTPS).
  • Demand transparency through detailed Service Level Agreements (SLAs) and regular vendor audits.

4. Prioritize Secure Development and Deployment

  • Train your development teams to follow secure coding practices like those outlined in the OWASP Secure Coding Guidelines.
  • Incorporate tools like Snyk or Checkmarx to identify vulnerabilities during the software development lifecycle.

5. Enhance Monitoring and Incident Response

  • Deploy Web Application Firewalls (WAFs) such as AWS WAF or Cloudflare to protect web interfaces.
  • Establish a robust incident response plan using guidance from the MITRE ATT&CK Framework to ensure rapid containment and mitigation.

6. Foster Collaboration

  • Work with industry peers and organizations like the Cybersecurity and Infrastructure Security Agency (CISA) to share intelligence and best practices for supply chain security.
  • Collaborate with academic institutions and research groups for cutting-edge insights into emerging threats.

7. Schedule a No-Obligation Consultation Call with Yours Truly

Struggling with supply chain vulnerabilities or need tailored solutions for your unique challenges? I offer consultation services to work directly with your CTO, Principal Architect, or Security Leadership team to:

  • Assess your systems and identify key risks.
  • Recommend actionable, budget-friendly steps for mitigation and prevention.

With years of expertise in cybersecurity and compliance, I can help streamline your approach to supply chain security without breaking the bank. Let’s collaborate to make your operations secure and resilient.

Schedule Your Free Consultation Today

Building a Resilient Supply Chain

The UK’s National Cyber Security Centre (NCSC) principles for supply chain security provide a pragmatic roadmap for businesses. Here’s how to act:

  1. Understand and Map Dependencies
    Organizations should create a detailed map of all dependencies, including direct vendors and downstream providers, to identify potential weak links.
  2. Adopt a Zero-Trust Framework
    Treat every external connection as untrusted until verified, with continuous monitoring and access restrictions.
  3. Mandate Secure Development Practices
    Encourage or require vendors to implement secure coding standards, frequent vulnerability testing, and robust update mechanisms.
  4. Regularly Audit Supply Chains
    Establish a routine audit process to assess vendor security posture and adherence to compliance requirements.
  5. Proactive Incident Response Planning
    Prepare for the inevitable by maintaining a robust incident response plan that incorporates supply chain risks.

Final Thoughts

The threat of supply chain vulnerabilities is no longer hypothetical—it’s happening now. With reports like CyCognito’s, research into dependency management, and frameworks provided by trusted institutions, businesses have the tools to mitigate risks. However, this requires vigilance, collaboration, and a willingness to rethink traditional approaches to third-party management.

Organisations must act not only to safeguard their operations but also to preserve trust in an increasingly interconnected world. 

Is your supply chain ready to withstand the next wave of attacks?


References and Further Reading

  1. Report Shows the Threat of Supply Chain Vulnerabilities from Third-Party Products – CyCognito
  2. Hidden Threats in PyPI and NPM: What You Need to Know
  3. Why Software Supply Chain Attacks Persist – Scientific Computing World
  4. Principles of Supply Chain Security – NCSC
  5. CyCognito Report Exposes Rising Software Supply Chain Threats

What’s your strategy for managing third-party risks? Share your thoughts in the comments!

Bitnami