Tag: saas

Scattered Spider Attacks: Tips for SaaS Security

Scattered Spider Attacks: Tips for SaaS Security

As cloud adoption soars, threat groups like LUCR-3 Scattered Spider and Oktapus are mastering new ways to exploit identity management systems(IAMs), making these attacks more frequent and harder to detect. By targeting cloud environments and leveraging human vulnerabilities, LUCR-3 compromises identity providers (IDPs) and uses sophisticated techniques to breach organizations.

Before we begin, I wanted to present a random sampling of the successful attacks carried over by the LUCR-3 aka Scattered Spider.

Company/ProductDate AttackedCompromised SystemProjected LossMitigation Time
Telecom Company (Unnamed)December 2022Mobile Carrier Network, IDP SystemsEstimated millions in damagesSeveral weeks (ongoing)​CrowdStrike
Octa (Roasted Oktapus)March 2022Identity Provider (Okta) and SaaSPotential damage to ~366 companies4-5 weeks​HeroWikipedia
British TelecommunicationsJune 2022Mobile Carrier Systems, BPO NetworksMillions in lost revenue3-4 weeks​CrowdStrikeHero
Gaming Company (Unnamed)September 2022Cloud Infrastructure (SaaS and IaaS)Losses in IP theft (unconfirmed)~2 weeks​ISPM ITDR
Cloud Hosting ProviderNovember 2022AWS, Azure Environments, IAM SystemsIP theft and reputational damage3 weeks​CrowdStrike
MGM ResortsSeptember 2023Corporate systems, Help Desk, and IDPMillions in lost revenueSystems offline for weeks​Wikipedia
Caesars EntertainmentSeptember 2023Identity Providers (IDP) and SaaS~$30 million ransom paid​ Wikipedia~1 month recovery​Cyber Defense Magazine
Charter CommunicationsApril 2024Cloud-based systems (Okta phishing)Potentially millions in damages​ ResilienceSeveral weeks
NHS Hospitals (UK)June 2024VMware ESXi servers, critical healthcare systemsDisruption of hundreds of operations​BleepingComputerOngoing​BleepingComputer
Synnovis Pathology ServicesJune 2024Ransomware on pathology services systemsEstimated millions in healthcare disruptions​BleepingComputerOngoing investigation​BleepingComputer
This table provides a detailed overview of Scattered Spider’s recent attacks across industries, demonstrating their evolving tactics and widespread impact.

This article outlines the technical steps LUCR-3 typically follows, from initial access to persistence and lateral movement within cloud environments, mostly targeting SaaS platforms.

Step 1: Initial Access Through Identity Compromise

LUCR-3 starts with a core weakness in modern security—identity management. Their main attack vectors include:

  1. SIM Swapping: LUCR-3 hijacks a user’s phone number by tricking the telecom provider into assigning the number to a new SIM card. Once they have control over the phone number, they can intercept One-Time Passwords (OTP) sent via SMS.
  2. MFA Fatigue: The attackers flood the target with repeated MFA prompts, often overwhelming them into approving a malicious login request.
  3. Phishing and Social Engineering: They set up fake login pages for SaaS applications (e.g., SharePoint or OneDrive), capturing legitimate credentials and OTP codes.

These techniques allow LUCR-3 to bypass standard Multi-Factor Authentication (MFA) protections and gain access to cloud environments​

ISPM ITDR, Hero.

Step 2: Bypassing MFA and Establishing a Foothold

Once inside, LUCR-3 focuses on maintaining access to the compromised identity. This is done by modifying the victim’s MFA settings. Their tactics include:

  • Registering New Devices: LUCR-3 will register their own devices (phones or emails) under the victim’s account, which ensures they can log in without triggering alerts. For example, they might register an iPhone if the victim previously used Android, raising minimal suspicion.
  • Adding Alternate MFA Methods: They add backup MFA methods, such as an external email address, making it even harder to lock them out if the breach is discovered​ISPM ITDR.

Step 3: Reconnaissance and Data Collection in SaaS Environments

After gaining access to cloud platforms, LUCR-3 conducts extensive reconnaissance to identify critical assets, credentials, and sensitive information. Here’s how they do it:

  1. SaaS Platforms: They use native tools within platforms like SharePoint, OneDrive, and Salesforce to search for documents containing passwords, intellectual property, or financial data. They operate like legitimate users to avoid detection.
  2. AWS Cloud: In AWS environments, LUCR-3 navigates the AWS Management Console, targeting services like EC2 (Elastic Compute Cloud) and S3 (Simple Storage Service). They leverage the AWS-GatherSoftwareInventory job through Systems Manager (SSM) to list running software across EC2 instances​ ISPM ITDR.
  3. Privilege Escalation: LUCR-3 may modify IAM roles or escalate privileges by updating LoginProfiles or creating new access keys, ensuring they have continued administrative access​Hero.

Step 4: Lateral Movement and Persistence

LUCR-3 ensures they have multiple ways to re-enter a compromised environment, even if one of their entry points is discovered. Here’s how they achieve persistence:

  1. Create New IAM Users: LUCR-3 creates new user accounts that align with the naming conventions of the compromised environment to avoid suspicion. These accounts often have high-level access, allowing them to continue accessing the environment even after the initial breach is patched.
  2. Secrets Harvesting: Using tools like S3 Browser, LUCR-3 harvests credentials stored in AWS Secrets Manager and similar services, allowing them to steal sensitive data and further penetrate systems​ Hero.
  3. MFA Manipulation: They alter MFA settings to ensure continued access, often registering additional email addresses or devices that align with the compromised identity.

Step 5: Data Exfiltration and Extortion

Once LUCR-3 has gained the necessary access and gathered sensitive data, they execute their final stage of the attack, which often involves extortion. The data collected during their reconnaissance, such as customer information or proprietary code, is used as leverage to demand payment from the compromised organization​ The Hacker NewsISPM ITDR.

How to Detect and Prevent LUCR-3 Attacks

Given LUCR-3’s sophisticated techniques, organizations must adopt advanced security measures to detect and mitigate such attacks:

  • Monitor MFA Changes: Keep a close watch for unusual changes in MFA settings, such as new device registrations or changes from app-based authentication to SMS-based methods.
  • Audit Cloud Logs: Regularly audit cloud environments, especially IAM policy changes, new access key creation, and suspicious activity in management consoles.
  • Behavioral Anomaly Detection: Implement advanced behavioral monitoring to detect when legitimate accounts are being used in unusual ways, such as accessing unfamiliar services or using unfamiliar devices.

Conclusion

LUCR-3 (Scattered Spider) represents a new breed of cyber threat actors that rely on identity compromise rather than malware or brute force. By targeting the very foundation of security—identity—they can infiltrate cloud environments, move laterally, and exfiltrate data with relative ease. As organizations increasingly rely on cloud services, strengthening identity management, closely monitoring for anomalies, and responding quickly to suspicious behavior are critical defenses against such attacks.

References and Further Reading

  1. The Hacker News: Provides a detailed breakdown of LUCR-3’s identity-based attacks across cloud environments, lateral movement techniques, and persistence strategies.
  2. Permiso.io: Discusses how LUCR-3 targets identity infrastructure, modifies MFA settings, and maintains persistence in cloud environments like AWS and Azure.
  3. CrowdStrike: Offers insights into Scattered Spider’s use of the Bring-Your-Own-Vulnerable-Driver (BYOVD) technique and their focus on telecom and BPO sectors.
  4. Resilience Cyber Research: Highlights recent phishing campaigns by LUCR-3 in 2024, targeting industries such as telecom, food services, and tech, using Okta-based phishing tactics.
  5. EclecticIQ: Discusses LUCR-3’s involvement in ransomware attacks targeting cloud infrastructures within the insurance and financial sectors, leveraging smishing and phishing techniques.
  6. Wikipedia (Scattered Spider): Overview of the MGM Resorts hack in 2023, detailing how Scattered Spider gained access to internal systems through social engineering and caused significant disruptions.
  7. Cyber Defense Magazine: Discusses how LUCR-3 has highlighted vulnerabilities in MFA and cloud security, predicting more targeted attacks on SaaS and cloud service providers.
  8. BleepingComputer: Provides an overview of LUCR-3’s collaboration with ransomware groups like Qilin, targeting high-profile companies such as MGM Resorts and healthcare services.
  9. Caesars and MGM Hacking Incident: Outlines how Caesars Entertainment suffered a breach in September 2023, paying a ~$30 million ransom, while MGM Resorts experienced extensive downtime following a similar attack.
  10. Microsoft and Qilin Ransomware: Microsoft linked Scattered Spider to ransomware attacks using the Qilin variant, affecting companies like Synnovis Pathology and NHS hospitals in 2024. Read moreBleepingComputerWikipedia

These resources offer in-depth insights into the attack strategies and defence mechanisms relevant to LUCR-3 (Scattered Spider), perfect for anyone looking to deepen their understanding of identity-based attacks and cloud security.

How to select SSO Standard for your SaaS Application.

How to select SSO Standard for your SaaS Application.

For anyone developing any application on the cloud, the major concern is always how is security implemented. Typically, you start with an authentication system viz. Usernames & Passwords. As your application grows in size of use cases and adoption, you’ll soon find a necessity to improve your security posture, these could range from MFA, Federated Identity management and finally authorisation. You now have customers who ask if you can support their AD authorisation or OneLogin or Okta etc. 

This is when you’ll think about implementing a Single-Sign-On. But, the choice of how to keep data and identities secure begins much earlier for software architects and developers: selecting the standard that should be used to keep federated identities safe. This will involve two things, architecting an authorisation system – could be a separate service or bound with your application – this choice is critical to how you can grow as an organisation. 

Architecture Choice:

If you choose to integrate it with your main product and 2 months later your board directs you to develop a new offering, you’ll end up doing it all over again. On the contrary, if you’re not going to pivot to any new business line, the additional time you will incur in building an external “Accounts service” will be a tax on the GTM. 

Standards Choice:

IT Administrators and Security Architects must first choose the protocol or framework to use to maintain federated identity, or the mechanism of connecting a person’s electronic identity and attributes, safe while designing a plan to keep data and identities secure.

A Single Sign-On (SSO) account has the advantage of allowing employees to log in once to an application or network and not have to log in to several apps or networks during the workday. While this is beneficial to employees in terms of increasing productivity by eliminating the need to remember several passwords, it is also beneficial to IT and Security functions. The Identity and Access Management (IAM) platform responsible for maintaining employees’ credentials can assist make it more manageable by registering fewer passwords in the system.

It is, however, not an easy choice. Security Assertion Markup Language (SAML), OpenID, and open authorization are the leading candidates in the federation process (OAuth). Let’s take a closer look at these technologies and determine when SAML, OAuth, and OpenID should be used.

What is Single Sign-On (SSO)?

SSO (Single Sign-On) is an authentication method that allows apps to validate users by using other trustworthy apps. Single sign-on allows a user to use a single ID and password to log into several applications.

SSO is an important part of an Identity and Access Management (IAM) platform for managing access. User identity verification is crucial for establishing what permissions a user will have.

SSO Standards

  • SAML

SAML is a protocol that allows an Identity Provider (IdP) to send a user’s credentials to a service provider for authentication and authorization. SAML allows for Single Sign-On (SSO) and streamlines password management. It is beneficial to businesses because employees are using an increasing number of applications to complete their tasks.

Keeping track of passwords for hundreds of programs used by hundreds, if not thousands, of employees can be difficult. SAML comes to the rescue by providing a single sign-on standard for businesses.

  • OAuth 

OAuth 2.0 is a secure authorization standard. It allows secure delegated access by providing third-party services with access tokens rather than exposing user credentials. It does not, however, authenticate; it just authorizes.

You’ve probably used OAuth 2.0 if you’ve ever signed up for a new app and consented to allow it automatically source fresh contacts from Facebook or your phone contacts. This standard ensures that delegated access is secure. This means that a program can operate on behalf of a user and access resources from a server without the user needing to provide their credentials. This is accomplished by allowing the Identity Provider (IdP) to issue tokens to third-party apps with the user’s permission.

  • OpenID

The OpenID Connect (OIDC) standard is used for authentication. OIDC is used by identity providers (those who generate and administer identities) so that users can log in with their IdP first and then access applications without having to re-enter their credentials.

This authentication option is recognizable if you’ve used your Google account to sign in to apps like YouTube or Facebook to log into an online shopping cart. Organizations use OpenID Connect to authenticate users, and it is an open standard. This is used by IdPs so that users can sign in to the IdP and then use their sign-in information to access other websites and apps without having to log in or disclose their sign-in information.

SAML VS OAuth VS OpenID

OAuth 2.0 is a framework for regulating authorization to a protected resource, such as a program or a set of files, whereas OpenID Connect and SAML are both federated authentication industry standards. As a result, OAuth 2.0 is used in quite different situations than the other two protocols, and it can be used in conjunction with either OpenID Connect or SAML.

OpenID Connect is based on the OAuth 2.0 protocol and uses an ID token, which is a JSON Web Token (JWT) that standardizes areas where OAuth 2.0 provides for flexibility, such as scopes and endpoint discovery. It depends on user authentication and is often used to make user logins easier on consumer websites and mobile apps.

Unlike JWT, SAML does not rely on OAuth and instead relies on a message exchange to authenticate in the XML SAML format. It’s more commonly used in enterprise settings to allow users to log in to several applications with a single password.

Final Thoughts

As technology advances and systems become more interconnected, federated identification becomes increasingly useful since it is more convenient for users. It saves them time by reducing the number of accounts and passwords they have to remember, but it raises some security concerns.

SAML has one feature that OAuth2 lacks: the SAML token contains the user identity information (because of signing). With OAuth2, you don’t get that out of the box, and instead, the Resource Server needs to make an additional round trip to validate the token with the Authorization Server.

On the other hand, with OAuth2 you can invalidate an access token on the Authorization Server, and disable it from further access to the Resource Server.

SAML provides a simpler and more standardized solution which covers all of our current and projected needs at ITILITE and avoids the use of workarounds for interoperability with native applications.

Bitnami